2,314 research outputs found

    Transplanckian energy production and slow roll inflation

    Full text link
    In this paper we investigate how the energy density due to a non-standard choice of initial vacuum affects the expansion of the universe during inflation. To do this we introduce source terms in the Friedmann equations making sure that we respect the relation between gravity and thermodynamics. We find that the energy production automatically implies a slow rolling cosmological constant. Hence we also conclude that there is no well defined value for the cosmological constant in the presence of sources. We speculate that a non-standard vacuum can provide slow roll inflation on its own.Comment: 16 pages, 2 figures, version 2: minor corrections to section 4 and references adde

    Space Noncommutativity Corrections to the Cardy-Verlinde Formula

    Full text link
    In this letter we compute the corrections to the Cardy-Verlinde formula of Schwarzschild black holes. These corrections stem from the space noncommutativity. Because the Schwarzschild black holes are non rotating, to the first order of perturbative calculations, there is no any effect on the properties of black hole due to the noncommutativity of space.Comment: 7 pages, no figures, accepted for publication in Int. J. Mod. Phys.

    Electromagnetic Corrections in Partially Quenched Chiral Perturbation Theory

    Get PDF
    We introduce photons in Partially Quenched Chiral Perturbation Theory and calculate the resulting electromagnetic loop-corrections at NLO for the charged meson masses and decay constants. We also present a numerical analysis to indicate the size of the different corrections. We show that several phenomenologically relevant quantities can be calculated consistently with photons which couple only to the valence quarks, allowing the use of gluon configurations produced without dynamical photons.Comment: 11 page

    Black hole thermalization rate from brane anti-brane model

    Full text link
    We develop the quasi-particle picture for Schwarzchild and far from extremal black holes. We show that the thermalization equations of the black hole is recovered from the model of branes and anti-branes. This can also be viewed as a field theory explanation of the relationship between area and entropy for these black holes. As a by product the annihilation rate of branes and anti-branes is computed.Comment: 11 pages, late

    Observing the Structure of the Landscape with the CMB Experiments

    Full text link
    Assuming that inflation happened through a series of tunneling in the string theory landscape, it is argued that one can determine the structure of vacua using precise measurements of the scalar spectral index and tensor perturbations at large scales. It is shown that for a vacuum structure where the energy gap between the minima is constant, i.e. ϵi=imf4\epsilon_i=i m_f^4, one obtains the scalar spectral index, nsn_s, to be 0.9687\simeq 0.9687, for the modes that exit the horizon 60 e-folds before the end of inflation. Alternatively, for a vacuum structure in which the energy gap increases linearly with the vacuum index, i.e. ϵi=i22mf4\epsilon_i=\frac{i^2}{2} m_f^4, nsn_s turns out to be 0.9614\simeq 0.9614. Both these two models are motivated within the string theory landscape using flux-compactification and their predictions for scalar spectral index are compatible with WMAP results. For both these two models, the results for the scalar spectral index turn out to be independent of mfm_f. Nonetheless, assuming that inflation started at Planckian energies and that there had been successful thermalization at each step, one can constrain mf<2.6069×105mPm_f<2.6069\times 10^{-5} m_P and mf<6.5396×107mPm_f<6.5396\times 10^{-7} m_P in these two models, respectively. Violation of the single-field consistency relation between the tensor and scalar spectra is another prediction of chain inflation models. This corresponds to having a smaller tensor/scalar ratio at large scales in comparison with the slow-roll counterparts. Similar to slow-roll inflation, it is argued that one can reconstruct the vacuum structure using the CMB experiments.Comment: v1: 8 pages, 2 figures; v2: grammatical typos corrected, results unchanged v3: To be published in JCA

    Squeezed States in the de Sitter Vacuum

    Full text link
    We discuss the treatment of squeezed states as excitations in the Euclidean vacuum of de Sitter space. A comparison with the treatment of these states as candidate no-particle states, or alpha-vacua, shows important differences already in the free theory. At the interacting level alpha-vacua are inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed, matrix elements can be renormalized in the excited states using precisely the standard local counterterms of the Euclidean vacuum. Implications for inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change

    Inflation as a probe of new physics

    Full text link
    In this paper we consider inflation as a probe of new physics near the string or Planck scale. We discuss how new physics can be captured by the choice of vacuum, and how this leads to modifications of the primordial spectrum as well as the way in which the universe expands during inflation. Provided there is a large number of fields contributing to the vacuum energy -- as typically is expected in string theory -- we will argue that both types of effects can be present simultaneously and be of observational relevance. Our conclusion is that the ambiguity in choice of vacuum is an interesting new parameter in serious model building.Comment: 14 page

    Lectures on string theory and cosmology

    Full text link
    In these lectures I review recent attempts to apply string theory to cosmology, including string cosmology and various models of brane cosmology. In addition, the review includes an introduction to inflation as well as a discussion of transplanckian signatures. I also provide a critical discussion of the possible role of holography. The material is based on lectures given in January 2004 at the RTN String School in Barcelona, but also contain some additional material.Comment: Lectures given in January 2004 at the RTN Barcelona String School, 50 pages, 9 figure

    On the Moduli Space of N = 2 Supersymmetric G_2 Gauge Theory

    Full text link
    We apply the method of confining phase superpotentials to N = 2 supersymmetric Yang-Mills theory with the exceptional gauge group G_2. Our findings are consistent with the spectral curve of the periodic Toda lattice, but do not agree with the hyperelliptic curve suggested previously in the literature. We also apply the method to theories with fundamental matter, treating both the example of SO(5) and G_2.Comment: 14 pages, LaTeX, 1 figure, reference adde

    De Sitter Waves and the Zero Curvature Limit

    Full text link
    We show that a particular set of global modes for the massive de Sitter scalar field (the de Sitter waves) allows to manage the group representations and the Fourier transform in the flat (Minkowskian) limit. This is in opposition to the usual acceptance based on a previous result, suggesting the appearance of negative energy in the limit process. This method also confirms that the Euclidean vacuum, in de Sitter spacetime, has to be preferred as far as one wishes to recover ordinary QFT in the flat limit.Comment: 9 pages, latex no figure, to appear in Phys. Rev.
    corecore